If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+16x+35=0
a = -3; b = 16; c = +35;
Δ = b2-4ac
Δ = 162-4·(-3)·35
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-26}{2*-3}=\frac{-42}{-6} =+7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+26}{2*-3}=\frac{10}{-6} =-1+2/3 $
| 31/2=4x | | 0.7+y+6.3=5 | | 2x÷5=73 | | m-4m+5=0 | | u+12=2u | | -4x+18=-13 | | x^2+15=96 | | x-3-5x=-3x-7+6x | | 1/2x+1/3=4+2/3x | | -15-4z=31 | | 3x+32=0 | | -8(v-7)=4v-4 | | u+49=8u | | 9x+8-3x=-4x-16+x | | (v+5)^2=3v^2+19v+58 | | -4x-43=-7(x+7) | | 7(-3-e)=0 | | 16-5y=25 | | y+y+1=57 | | 2(v-1)=-3v+3 | | 2(6x+8)=100 | | Y+4=y-5*4 | | 9v+3=6(v-1) | | -4x+25=14 | | m^2+3m-5=0 | | 2f-35=f+81÷9 | | 6.25x=21 | | 23x=31 | | 126-4x=-10x+180 | | -5+5y=20 | | (5+4-5+3)8/2=x | | s+28=2s |